

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title				ECTS code		
Combinatorics				11.1.0324		
Name of unit administr	ating study					
null						
Studies						
faculty	field of study	type	type first tier studies (BA)			
Faculty of Mathematics,	Mathematics	form	form full-time			
Physics and Informatics			specialty null, mathematics – teacher education			
Faculty of Mathematics,	Mathematics	specialization		etudios (MA)		
Physics and Informatics	Mathematics		pe second tier studies (MA) m full-time			
1 Tryolog and Information		specialty				
			education			
Faculty of Mathematics	Mathematical Madelina	specialization		studies (MA)		
Faculty of Mathematics, Physics and Informatics	Mathematical Modeling and Data Analysis		type second tier studies (MA) form full-time			
Filysics and informatics	and Data Analysis		specialty all			
		specialization				
Teaching staff						
_	rzei Nowiki dr Morte Frank	rowaka: dr Dai l	artabaaaaku	ul: dr Marak Halanda		
prof. UG, dr hab. Andı		erichoosaku	ECTS credits			
Forms of classes, the realization and number of hours Forms of classes						
				5		
Wykład (to translate), Ćw. audytoryjne (to translate)						
The realization of activ	ities					
lectures in the classro	om					
Number of hours						
Wykład (to translate):	30 hours, Ćw. audytoryjne	e (to translate): 3	30 hours			
2021/2022 summer se	emester					
Type of course		Langua	Language of instruction			
elective (to translate)	- polis	:h				
(ish			
Teaching methods	Form ar	Form and method of assessment and basic criteria for eveluation or				
- Rozwiązywanie zada	ań (to translate)		ation requir	ements		
- Wykład problemowy (to translate)			Final evaluation			
			- Zaliczenie na ocenę (to translate)			
		- Egzamin (to translate)				
	Assessi	Assessment methods				
			- kolokwium (to translate)			
			- egzamin pisemny z pytaniami (zadaniami) otwartymi (to translate)			
) = p) (======, ====,)		

Assumed aims of education	Exam	Test	Observations of Student's attitudes	Student's activity in the classroom	
	Knowledge				
M2_W01	+	+			
M2_W02	+	+			
M2_W03	+				
	Skills				
M2_U01	+	+			
M2_U03			+		
M2_U04	+	+			
M2_U05	+				
M2_U06		+			
M2_U07				+	

Required courses and introductory requirements

- A. Formal requirements
- B. Prerequisites

Aims of education

The goal of this course is to present a selected notions and theorems from combinatorics.

Course contents

- 1. Fundamental techniques in discrete mathematics (counting the number of functions, permutations, subsets, etc.), Catalan numbers, inclusion-exclusion principle.
- 2. Hall's marriage theorem and it's applications to Latin rectangles and tournaments (Landau's theorem). Bell numbers, Stirling numbers of the first and second kind and some relations between these numbers.
- 3. Latin squares and their basic properties.
- 4. Theorems concerning Latin square extensions. Recently solved problems about Latin squares extensions (Dinitz conjecture, Evans' conjecture).
- 5. Mutually orthogonal Latin squares. Definition of the number N(n) and its properties.
- 6. Ramsey's theorem (finite and infinite version). Definition of the Ramsey number. Well known bounds for the Ramsey numbers. Some examples of Ramsey numbers (R(3,3), R(3,4)).
- 7. Partition theorems: Hales–Jewett theorem, Van der Waerden's theorem, Schur's theorem and sum-free sets, Szemeredi's theorem (without proof).
- 8. Matroids and greedy algorithms. Some unsolved problems in combinatorics, for example: the Frankl conjecture, Erdos conjecture on arithmetic progressions, etc. Open problems in Ramsey theory.

Bibliography of literature

- "Wstęp do matematyki dyskretnej", A. Szepietowski.
- "Kombinatoryka", W.Lipski.
- "Wykłady z kombinatoryki", Z. Palka, A. Ruciński.
- "Combinatorics: Topics, Techniques, Algorithms", P. Cameron

Knowledge

- The student knows the definitions and properties of basic combinatorial notions (counting of functions, permutations, subsets, the Catalan numbers, the Bell numbers, the Stirling numbers, etc.)
- Is familiar with major theorems from combinatorics (for example the inclusion–exclusion principle, Hall's marriage theorem, Ramsey theorem, et cetera.)
- The student knows the infinite version of the Hall's marriage theorem.
- The student can formulate at least one theorem about the approximation of the number of systems of distinct representatives.
- The student knows the definition of a Latin square, Graeco-Latin square and the definition of mutually orthogonal Latin squares.
- The student can formulate the thirty-six officers problem and knows the interpretation of this problem in the language of Graeco-Latin squares.
- The student knows the definition and basic properties of the number MOLS(n) and is able to formulate at least open question about this coefficient.

- The student knows for which numbers less than 10 there does not exist a Graeco-Latin square of size n x n.
- Knowledge of the formulations of both versions of the Ramsey theorem (finite and infinite version).
- Knowledge of the correct interpretation of the formulas R(n, k) <= M, R(n, k) >= M and R(n, k) = M.
- The student knows the definition of the combinatorial game SIM and knows why (by virtue of the Ramsey theorem) we cannot obtain draw in this game.
- The student knows some open problems from combinatorics and she/he can
 formulate some consequences of solving this problems. Knowledge of some
 basic partition theorems (the Ramsey theorem, the Schur's theorem, the HalesJewett theorem, the Van der Waerden's theorem).
- Knowledge how to proof the Van der Waerden's theorem assuming the Hales-Jewett theorem.
- Knowledge of at least two open problems from combinatorics.
- The student knows the notion of a Hadamard matrix and can formulate at least one application of it.

Skills

- Dealing with examples of applications of basic combinatorial theorems for special cases.
- Ability to derive explicit formulas from recurrence formulas using standard special sequences (like Stirling numbers, Catalan numbers, Bell numbers).*
 Ability to compute the number of objects from a given problem/exercise using basic combinatorial theorems and notions. * Ability to compute the number of objects using the notion of combinations with repetitions.
- Ability to apply the Hall's marriage theorem to solve given problem/exercise.
- Ability to check whether given a bipartive graph (or a system of sets) has a system of distinct representatives.
- Ability to extend given a Latin rectangle to a Latin square. Also ability to prove that a not full Latin square cannot be extended to a full Latin square.
- Ability to give a few nonisomorphic Latin squares of a given size.
- ullet Ability to apply the theory of fields to construction of p 1 mutually orthogonal Latin squares of size p x p.
- Ability to sketch a proof of one of the partition theorems (for example the Schur's theorem).
- Ability to give an application of the equality R(3, 3) = 6.
- Ability to give an interpretation of the value S(3) = 13 and an appropriate counterexample that S(3) is not below 13.
- Ability to find a Hadamard matrix of size n x n for an appropriate small even n.

Social competence

andrzej@mat.ug.edu.pl

Contact