Sylabusy - Centrum Informatyczne UC

NARODOWA STRATEGIA SPÓJNOŚCI	Jnię Europejską w rama Europejskiego Fundusz Społecznego	ch EUROPEJSKI * * u FUNDUSZ SPOŁECZNY ** * *	
Course title		ECTS code	
Numerical Methods		13.2.0427	
Name of unit administrating study			
Faculty of Mathematics, Physics and Informatics			
Studies			
faculty field of study	type all		
Faculty of Mathematics, Quantum Information	form all		
Physics and Informatics Technology spo	specialty all ecialization all		
Feaching staff			
prof. UG, dr hab. Wiesław Miklaszewski; dr hab. Mar	rek Krośnicki		
⊦orms of classes, the realization and number of ho	urs	EUIS credits	
FORMS OF Classes		5	
Laboratory classes, Lecture The realization of activities			
classroom instruction, online classes			
Number of hours			
Laboratory classes: 30 hours, Lecture: 30 hours			
The academic cycle			
2022/2023 winter semester			
Type of course	Language of instruc	ction	
obligatory	english		
Teaching methods	Form and method o	f assessment and basic criteria for eveluation or	
- critical incident (case) analysis	examination requirements		
- multimedia-based lecture	Final evaluation		
- problem solving	- Graded credit	- Graded credit	
- project-based method (research, implementation,	- Examination	da	
practical project)	Assessment metho	ds	
	- (mid-term / end-te	- (mid-term / end-term) test	
	- written exam with	open questions	
	- written exam (tes	n evaluation	
	5 questions/problems to	he solved from the list of 20 problems discussed/overlained	
	during the lecture. The li questions	st is published in advance. Correct answer to at least 3 of 5	
	computer project rep	port (2 projects)	
	l services biological		

established effect of education	exam	projects
W01	+	+
W02	+	+
W03	+	+
W04	+	-
W05	+	+
U01	-	+
U02	-	+
U03	-	+
К01	+	-

Required courses and introductory requirements

A. Formal requirements

NONE

B. Prerequisites

Basic knowledge of numerical methods at first degree level

Aims of education

This course is an advanced course of numerical methods for quantum information . To explore quantum information one require computational methods since mathematical models are only rarely solvable algebraically. Numerical methods, based upon computational mathematics and quantum physics, are the basic algorithms enabling computer predictions in quantum information. Such methods include techniques for optimization, linear algebra underlying eigenvalue problem, stochastic simulation

Course contents

Optimization: basic concepts, computational complexity.

Linear programming: simplex method, duality and sensitivity.

Unconstrained optimization: method of steepest descent, Newton's method, conjugate gradient algorithm; linear least squares, robust optimization. Constrained optimization: projected gradient methods; sequential unconstrained minimization, convex optimization, nonlinear optimization. Combinatorial optimization: simulated annealing.

Maximum likelihood estimation.

Evolutionary algorithm.

Singular value decomposition, the pseudo-inverse.

Matrix eigenvalues: Jacobi's method, Givens' transformation, Householder transformation, the LR method, the QR method.

Maximum (minimum) modulus eigenvalue: power method, inverse power iteration, shifted inverse power iteration.

The general eigenvalue problem.

Numerical methods for sampling from a given density

Numerical simulations of master equations.

Software for optimization, eigenproblem solution and stochastic simulations.

Bibliography of literature

G. S. Chirikjian, Stochastic Models, Information Theory, Analytic Methods and Modern Applications and Lie Groups, Vol. 2, Analytic Methods and Modern Applications, Springer Science+Business Media, 2012

- S. Butenko, P.M. Pardalos, Numerical Methods and Optimization, An Introduction, Taylor & Francis Group 1014
- S. K. Bose, Numerical Methods of Mathematics Implemented in Fortran, Springer Nature Singapore Pte Ltd. 2019
- A. Kharab, R. B. Guenther, An Introduction to Numerical Methods, A MATLAB Approach, Taylor & Francis Group, 2019
- É. Walter, Numerical Methods and Optimization, A Consumer Guide, Springer International Publishing Switzerland 2014

G. Lindfield, J. Penny, Numerical Methods Using MATLAB, Elsevier 2019

- R. Toral, P. Colet, Stochastic Numerical Methods, An Introduction for Students and Scientists, Wiley-VCH 2014
- R. K. Gupta, Numerical Methods Fundamentals and Applications, Cambridge University Press 2019
- B. Extracurricular readings

The learning outcomes (for the field of study and	Knowledge
specialization)	14/01
	WOT
K_W01	has advanced knowledge about optimization numerical methods (K_W02)
Student has extensive knowledge of general physics and	W02
advanced knowledge in the area of quantum information	knows numerical methods for solution of the eigenvalue problem (K_W02, K_W06)

Sylabusy - Centrum Informatyczne UC

theory; knows the history of the development of quantum	W03
information theory and its importance for the progress of	Student understands stochastic simulation methods (K W01, K W02, K W05)
science, world cognition and social development	W04
	Student knows the proofs of the main facts (K_W02)
K_W02	W05
Student has in-depth knowledge of advanced mathematics,	Student knows numerical algorithms used to model selected physical phenomena
mathematical and computer methods necessary to solve	(K_W01, K_W02, K_W03, K_W05, KW06))
physical problems of medium complexity and advanced in	Skills
the area of quantum information and its technological	1101
aspects	is able to solve numerically an ontimization problem or, an eigenvalue problem, and
	analyze obtained results (K 1102 K 1103 K 1105)
K_W03	
Student knows advanced experimental, observational and	is able to use theoretical knowledge in the numerical analysis to prenare and run an
numerical techniques allowing to plan and perform a	efficient computer code (K. 101, K. 103)
complex physical experiment or computer simulation	
	is able to write a report about, solved numerically project (K, LI07)
K_W05	Social competence
Student knows the theoretical basis of computational	
methods and information techniques used to model and	K01
simulate physical systems considered in the theory of	The student knows the meaning of the numerical experiment in physical sciences
quantum information	(K_K01)
17 Maa	
K_W06	
Student has knowledge of the current trends in the	
development of physics, in particular within the quantum	
information theory	
K 1101	
Student can apply mathematical knowledge to	
formulating analyzing and solving problems	
related to information theory	
K_U02	
Student can apply mathematical knowledge and	
mathematical tools to	
formulate and solve problems within the framework of	
quantum information theory	
K_U03	
can make a critical analysis of observations or theoretical	
calculations along with the assessment of the accuracy of	
the results	
K 1105	
n_000 has the ability to synthesize methods and ideas from	
sciences: is able to notice that often distant phenomena are	
described by similar models	
K_U07	
can present the results of research (experimental,	
theoretical or numerical) in writing, orally, as a multimedia	
presentation or as a poster	
K_K02	
Student is aware of the decisive role of experiment in	
verifying physical theories; he is aware of the existence of a	
Contact	
Contact	

Sylabusy - Centrum Informatyczne U

wieslaw.miklaszewski@ug.edu.pl

