

Projekt współfinansowany przez Unię Europejska w ramach Europejskiego Funduszu Społecznego

UNIA EUROPEJSKA
EUROPEJSKI FUNDUSZ SPOŁECZNY


KAPITAŁ LUDZKI
NARODOWA STRATEGIA SPÓJNOŚCI

ECTS code
13.2.0420

| Course title |  |  |  | ECTS code |
| :---: | :---: | :---: | :---: | :---: |
| Probability and statistics |  |  |  | 13.2.0420 |
| Name of unit administrating study |  |  |  |  |
| Faculty of Mathematics, Physics and Informatics |  |  |  |  |
| Studies |  |  |  |  |
| faculty <br> Faculty of Mathematics, <br> Physics and Informatics | field of study | type | all |  |
|  | Quantum Information | form | all |  |
|  | Technology | specialty | all |  |
|  |  | specialization | all |  |

## Teaching staff

dr hab. Marcin Marciniak; dr Hanna Wojewódka-Ściążko; dr Anita Dąbrowska; mgr Paulo Cavalcanti

| Forms of classes, the realization and number of hours |
| :--- |
| Forms of classes |
| $\quad$ Auditorium classes, Lecture |
| The realization of activities |
| classroom instruction, online classes |
| Number of hours |
| Auditorium classes: 30 hours, Lecture: 30 hours |

## ECTS credits

## 5

30 h of lecture - 1 ECTS point;
30 h of exercises - 1 ECTS point;
30 h of consultation - 1 ECTS point;
60 h of student's own work - 2 ECTS points

The academic cycle
2022/2023 winter semester

| Type of course obligatory | Language of instruction english |
| :---: | :---: |
| Teaching methods | Form and method of assessment and basic criteria for eveluation or |
| - critical incident (case) analysis <br> - discussion <br> - multimedia-based lecture <br> - problem solving <br> - problem-focused lecture | Final evaluation <br> - Graded credit <br> - Examination |
|  | Assessment methods <br> - (mid-term / end-term) test <br> - written exam (test) |
|  | The basic criteria for evaluation <br> Exams (Lecture and Exercises): correct answer to at least $60 \%$ of the questions. Evaluation criteria and exams' tentative schedule will be communicated to the students during the first classes |

## Method of verifying required learning outcomes

Required courses and introductory requirements
A. Formal requirements
none

## B. Prerequisites

Basic knowledge of mathematics at high school level is required

## Aims of education

The aim of this lecture is to provide students with specific knowledge of probability theory and statistics necessary to understand some aspects of quantum mechanics and quantum information theory

## Course contents

The course contents includes presentation of the following concepts (lecture and exercises will be devoted to the same topics):
Introduction to measure theory: measurable spaces, measurable functions, integration over a measurable space, Lebesgue theorems and Fatou

## lemma

Basic notions of probability theory: elementary events, $\sigma$-field of events, probability as a measure, conditional probability, independence.
Random variables: measurability, distribution, density function; expectation, variance, moments; random vectors, joint distribution, independence of random variables.
Limit theorems: various types of convergence of random variables, central limit theorem, laws of large numbers, law of iterated logarithm Probability models in quantum information: correlation boxes
Noncommutative probability: noncommutative probability space and related notions; free probability
Random matrices: Winger theorem
Descriptive statistics
Statistical hypothesis and statistical tests: Kolmogorov test, Student test
Elements of quantum statistical mechanics

## Bibliography of literature

Literature required to pass the course
P. Billingsley, "Probability and measure"
O. Bratteli, D Robinson, „Operator algebras and statistical mechjanics" vol. I, II

Material provided by the lecturer.
Extracurricular readings
Mathematical blog "Is Quantum Mechanics a Probability Theory?"
https://www.math.columbia.edu/~woit/wordpress/?p=10533
D. Voiculescu, K.J. Dykema and A. Nica, Free Random Variables, CRM Monograph Series 1, American Mathematical Society, 1992.
A. Nica, R. Speicher, "Lectures on the Combinatorics of Free Probability Theory" https://www.math.uni-sb.de/ag/speicher/publikationen/Nica-

Speicher.pdf
G. Pisier, Grothendieck's Theorem, past and present, arXiv:1101.4195

## The learning outcomes (for the field of study and specialization)

K_W02
Student has in-depth knowledge of advanced mathematics, mathematical and computer methods necessary to solve physical problems of medium complexity and advanced in the area of quantum information and its technological aspects

K_W04
Student knows the advanced methods of theoretical and mathematical physics necessary in creating models of quantum mechanics

K_U02
Student can apply mathematical knowledge to formulating, analyzing and solving problems related to information theory

## Knowledge

W01:
Student knows and understands the basic probability and statistical concepts used in foundations of quantum information. (K_W02)
W02
Student knows the mathematical formulation of quantum mechanics and quantum information concepts (KW_04)

## Skills

U01
Student is able to formulate and solve mathematical problems within the probabilistic interpretation of quantum information theory (K_U02) U02
Student is able to translate physical and quantum information problems into mathematical formalism and vice versa (K_U02)

## Social competence

## Contact

marcin.marciniak@ug.edu.pl

